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ABSTRACT 

We consider timescales on which particle distributions respond to pitch angle diffusion. 
On the longest timescale, the distribution decays at a single rate independent of 
equatorial pitch angle a0, even though the diffusion coefficient, and the distribution 
itself, may vary greatly with a0. We derive a simple integral expression to approximate 
this decay rate and show that it gives good agreement with the full expression. The roles 
of both the minimum and loss cone values of the diffusion coefficient are demonstrated 
and clarified. 

Published by Elsevier Ltd. 

1.  Introduction 

A dominant process for radiation belt electrons is pitch 
angle diffusion, caused by cyclotron and Landau resonance 
with a variety of plasma waves. The resulting scattering 
into the loss cone and precipitation into the atmosphere is 
a major loss mechanism, especially inside of geosynchro- 
nous orbit. Neglecting all other processes, the relaxation 
of a population injected with an arbitrary pitch angle 
distribution can be considered to occur on a sequence 
of time scales given by the ordered eigenvalues of the 
bounce-averaged pitch angle diffusion operator (e.g.. 
Schulz and Lanzerotti, 1974; see also, O'Brien et al., 
2008). Although the long time behavior is described by 
the single, longest timescale, the time required for the 
higher eigenmodes to decay can be significant, and can 
lead to complications in interpreting short sequences 
of observations (Kress et al.. 2007; Baker et al., 2007). In 
this paper, we generally refer to the slowest diffusion time 
scale as "the lifetime." 

Strictly, this eigenvalue problem depends on the values 
of the diffusion coefficients at all values of equatorial pitch 
angle a0. These coefficients can vary widely with ao, as 

* Corresponding author. Tel : +1781377 3992. 
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yshprits@>atmos.ucla.edu (Y.Y. Shprits). 
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different resonances come into play depending on the 
local values of particle pitch angle, wave refractive index, 
and geomagnetic field. Typically, for a given wave mode, 
diffusion by cyclotron resonances is the largest for small 
a0 while diffusion by the Landau resonance is the largest 
for large a0, leading to a pronounced minimum at some 
intermediate a0 (although this may be masked by 
combining different wave modes with diffusion minima 
located at different a0 values). Lyons and Thome (1973) 
gave an integral equation for simultaneously determining 
the lowest eigenvalue and eigenfunction. or the lifetime 
and relaxed pitch angle distribution, for an arbitrary 
profile of D(a0). Albert (1994) reformulated this as a 
boundary value problem for a set of ordinary differential 
equations, readily solved with "shooting" method (Press 
et al., 1992). Both approaches will be used below. 

Shprits et al. (2006) proposed a simple, convenient 
method of estimating the global diffusion lifetime, namely 
as the inverse of the diffusion coefficient evaluated at the 
edge of the loss cone (denoted by D/.). This follows in 
the footsteps of several earlier papers which related the 
lowest eigenvalue to DL for simple model problems (e.g., 
Kennel and Petschek, 1966; Roberts, 1969; Schulz 
and Lanzerotti, 1974). Shprits et al. (2006) argued that 
away from the loss cone, small diffusion coefficients 
are compensated by the development of large gradients 
in the particle distribution. A series of numerical experi- 
ments with model diffusion coefficients showed reasonable 

20091026186 
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agreement for D(a0) profiles with moderate internal 
minima. They also noted that large minima lead to slow 
relaxation of the pitch angle profile, perhaps slower than 
of physical interest, while the behavior on shorter time 
scales did seem to be controlled by the loss cone diffusion 
rate. They concluded that internal minima in D were 
subordinate to the loss cone value as long as these 
diffusion coefficients were within a factor of 10. 

On the other hand, one might expect the decay rate to 
be dictated by the minimum value of the diffusion rate, 
termed a "bottleneck" by Schulz (1991) who tied them to 
"shoulders" in the distribution function /(ao). Lichtenberg 
and Lieberman (1983), discussing transport with variable 
diffusion coefficients in a different context, also noted that 
the gradients becomes steeper where the diffusion is 
slower but concluded from the continuity of flow that the 
effective diffusion rate is given by the harmonic average, 
((1/D))"\and that this is dominated by regions where D is 
the smallest. This seems consistent with the numerical 
results of Abel and Thome (1998), who found that 
diffusion due to lightning whistlers and VLF transmitters, 
while negligible compared to Coulomb collisions and 
hiss rates at the loss cone, greatly reduce the lifetime of 
500 keV electrons at L = 2.4 by smoothing the deep 
minimum that would otherwise occur at a0 ~ 65°. 
Similarly a numerical study of diffusion due to combined 
whistler mode hiss and EMIC waves (Albert, 2003) found 
the electron lifetimes to be strongly affected by the hiss 
amplitudes which determined the value (and location) of 
the minimum in D, even though hiss was negligible at 
theloss cone itself. 

To explore and reconcile these two viewpoints, we 
start with exact expressions for the decay rates and derive 
an integral approximation which reflects aspects of both. 
We also evaluate a model that admits a (nearly) exact 
analytical treatment. Section 3 tests the approximation 
and several simpler expressions against an analytically 
solvable model, and Section 4 does the same with a series 
of numerical experiments paralleling those of Shprits et al. 
(2006). We conclude that the integral approximation is an 
accurate and reliable estimate for a wide variety of 
diffusion models. 

2.  General expressions for lifetimes 

We start with the one-dimensional bounce-averaged 
pitch angle diffusion equation, 

1 8/ = 
dt    Tsin2a05a0 '5a0 

ID 

where a0 is the equatorial pitch angle, D is the cor- 
responding pitch angle diffusion coefficient, S is a 
stationary source term, and T% 1.30-0.56 sin a0 is the 
normalized bounce time. The boundary conditions are/ = 
0 at the loss cone angle aL and df/dao = 0 at a0 = 7t/2. 

Following Lyons and Thome (1973), we write /(a0, t) = 
/o(ao) + g(ao)exp(-t/T), where f0 solves Eq. (1) in steady 
state, to get 

-gT sin 2a0       d   /       . dg 
—  = -s—   DT sin 2a0 -p5- 

T da0 V da0 
(2) 

Integrating from the loss cone angle aL to n/2 and taking 
the boundary conditions into account gives 

1  fnl2 

gTsin2a'da' DJLsin2aL-^- 
dac0 

(3) 

where DL = D(at) and TL = T(at). Eq. (3) is the same as 
Eq. (13) of Lyons and Thome. More generally, integrating 
from an arbitrary value of a to n/2 gives 

1/ t/2 (jg 
gTsin2a'da' = DT sin 2a 2=. 

da (4) 

Dividing  Eq.  (3)  by  Eq.  (4),  solving  for dg/da,  and 
integrating from ocL to a0 gives 

JctL 

g(Oo) 

where 

/1(a) = 1 

da 
DLrLsin2a1(dg/da)|c,1 

DT sin 2a 
/1(a), 

J^gT sin 2a'da' 

r/2gT sin 2a'da'' 

(5) 

(6) 

Eq. (5) is the same as Eq. (12) of Lyons and Thome (1973). 
Combining this with Eq. (3) gives 

fn/2 f*°      da 
= /      da0Tsin2a0 /     _._. .       /1(a). 

JaL JiL  DT sin 2a 
(7) 

We denote by T0 the value of t obtained with the 
approximation T(a0) = l. Making this approximation in 
Eq. (7) and reversing the order of integration according to 
/;/2 da0 £ da = jf da jf2 da0 yields 

T() 
fit/2 

= da 
cos a 

2D sin a 
/1(a). (8) 

3.  An estimate 

We now consider the situation where D has a deep 
minimum at some value a = a.. As a decreases from n/2, 
the left-hand side of Eq. (4) increases. If D becomes small 
at a = a,, then dg/da must become large there, so that g is 
much larger for a>a» than for a<a,. If g(a)sin2a is 
approximated as 0 for a <a, and constant for a >a„ Eq. (6) 
gives 

(1, a=Sa„ 
(9) 

so that 

/ai 2D sin a    JIm 2Dsina(7i/2)-a,' 
(10) 

Because the second integrand is zero at a,, where 
l/(Dsina) is assumed to have a steep maximum, the 
second integral will be less than the first integral, finally 
yielding the estimate 

pn/2 
r» =  /       da 

cos a 
2D sin a' (11) 

This formula clearly suggests that x will be determined 
mostly by the minimum value of 2D tan a0. 
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This partially vindicates both simple estimates dis- 
cussed above. If the minimum of D is deep enough, it will 
largely determine the minimum of Dtana0. If D(oto) is 
relatively flat, the minimum of Dtana0 will occur at the 
loss cone. If the minimum of D occurs near the loss cone, 
the two concepts coincide. 

4. An analytically solvable model 

For some simple analytical forms of D(<x0). and 
neglecting the variation of T(a0), it is possible to write 
the complete set of eigenvalues and eigenfunctions of the 
diffusion operator in closed form. As given by Schulz 
and Lanzerotti (1974), with slight change of notation, 
the model D = D0 cos2" a0/sin2 a0 with a < 1 yields (as we 
have verified) the eigenvalues and (unnormalized) eigen- 
functions 

gn<«o) 

(1 -"*" 
COS2-' 

cos" at 

L^Do.    n = 0(l,2,... 
i- 

cos" a i, Km" 
cos1 

cos1 
*J 

(12) 

where v = cr/(1 - a) and Km is the nth zero of the Bessel 
function Jv. Remarkably, the expressions remain valid for 
<T<0, in which case D has an internal minimum at 
sin2 a0 = 1/(1 - °)'< tne minimum value is D0(l - a) 
(-<r/(l - a)f. Also, ff<0 guarantees that the eigenfunc- 
tions obey the boundary conditions associated with 
Eq.(l). 

With <7 =-1, _/,(z) = (2/7tz)1/2cosz (Gradshteyn and 
Ryzhik, 1980). and the eigenvalues and eigenfunctions 
become 

,      rr2(l+2n)2 

n = 0,1.2, 

gn(a0) = cos 
rt(l + 2n)cos2 a0 

cosz at 
[13) 

These results agree closely with full numerical solutions 
based on Albert (1994), and essentially perfectly with 
numerical solutions setting T(a0) = 1. 

The inverse of the lowest eigenvalue is 

To = 
cos4 at 

From Eq. (11), the estimate T. is 

cos4 at 
;~8D0

-' 

(14) 

(15) 

which agrees extremely well with T0, even though the 
minimum of this model D(a0) is not sharp enough to cause 
a pronounced "shoulder" ing(a0) as assumed. The inverse 
minimum values 

1 

and 

1 
4Do~ 

1 3v/3 1 

(16) 

(17) 
(2Dtana0)min     32D0 

also usually agree with T0 to within about a factor of 2 for 
plausible values of at. The inverse value at the edge of the 
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Fig. 1. Diffusion coefficient D and pitch angle profile g vs. equatorial 
pitch angle a0 for the analytical model discussed in the text. Also shown 
are the decay lifetime T and several estimates 

loss cone. 

0, 

cos2 at sin2 at (18) 

differs by the factor -10 tan2 at. which can be significantly 
less than 1. 

Fig. 1 shows D(a0) and the shape of g(a0). calculated 
with at corresponding to L = 4 in a dipole magnetic field. 
The approximation T(a0) = 1 has virtually no effect on the 
shape of g. Also shown are the value of T from a full 
computation, the analytic value T0, and the estimate T,, all 
of which agree quite closely, as well as the simpler 
estimates DL and Dmjn. Both simpler estimates are seen to 
give significantly poorer agreement than r». 

5.  Numerical experiments 

To further test the estimate given by Eq. (11), we repeat 
the numerical experiments of Shprits et al. (2006). These 
were based on pitch angle diffusion coefficients for 1 MeV 
electrons at L = 4 due to lower-band chorus waves, 
calculated using the parallel-propagation formulation 
of Summers (2005). (The parameters used were o>M = 
0.35ft,,, 6M = 0.15i2e, coLC = 0.05ftf. OJUC = 0.65J2f. and 
Wpe/Qe = 4.15.) The D values were combined with 
artificial step-function decreases at various a0 ranges. 
For each modified version of D. we computed the lowest 
eigenmode g(an) and lifetime z according to the shooting 
code algorithm of Albert (1994). and repeated the 
calculation with the approximation T(a0) = 1 to obtain 
T0. The lifetimes were compared to the approximation r, 
and the simple estimates Df' and D~]n. 
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Fig. 2. Diffusion coefficients based on parallel-propagating chorus waves combined with step decreases at various locations. Also shown are the lifetime 
and various estimates; the symbols have the same meaning as in Fig. 1. 

I 
to 

o 

10.00 1         1 

1.00 
1 

/[A     / 
/           J 

i 

0.10 
I 

I 

I 

I 

0.01 i        i 

i 

/ 
/ 

i 

i 

i 

/ 
• 

'A 

-x 

0  30 60 90 0  30 60 90 0  30 60 90 
ar a, ar 

Fig. 3. Same as Fig. 2 but with step decreases of various depths. 

Fig. 2 corresponds to Fig. 3 of Shprits et al. (2006), 
where a step of depth Dt/10 and width 20° was imposed 
at large, intermediate, and small values of a0. In all cases, 
both T and g(a0) agree with the results found by Shprits 
et al. by directly evolving the diffusion equation in 
time numerically. The estimate Dj"1 works well if the 
step is at large or small a0, or absent, but starts to 
break   down   when   the   step   is   at   intermediate   a0- 

The estimate D~]n is generally poor, but x, is consistently 
good. Actually, r. is a better estimate of to than 
of T, since both assume T(a0) = 1, but the difference is 
small. 

Fig. 3, corresponding to Fig. 4 of Shprits et al. (2006), 
shows a similar comparison with the step decrease held at 
intermediate a0 but with varying depth. The value Df1 is a 
good approximation of T for small and moderate step 
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Fig. 4. Same as Fig. 2 but with step decreases of various widths. 
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Fig. 5. Same as Fig. 2 but with large step decreases at large and small a0. 

decreases, but breaks down for large steps. D~|n is a poor 
estimate of T, but T, is reliably good. 

In Fig. 4, the width of the step is varied. Once again, t 
and T0 are approximated poorly by D^\n and well by Df' 
for narrow and moderate steps, but the agreement breaks 
down for wide steps, while x. provides a uniformly good 
estimate. 

Finally, Fig. 5 shows much deeper steps (Dt/100 and 
Di/1000). When the step is at small a0, all the values are 

close together. However, when the step is at large a0. only r, 
is a good approximation to t and T0. 

6.  Conclusions 

We have derived a new estimate of the lowest pitch 
angle diffusion timescale T, namely T. of Eq. (11), based 
on the integral of 1 /D tan a, and verified its accuracy 
with an analytically solvable model and with a variety of 
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numerical experiments. The approximation is simpler and 
more physically transparent than the full calculation, and 
allows convenient estimates of changing various wave 
parameters (such as amplitude or latitudinal extent) by 
considering D at only a certain values of <x0. The exact 
expression t given by Eq. (7), however, is not difficult to 
compute (as in Albert, 1994), and is the most rigorous. 

Based on their numerical experiments, Shprits et al. 
(2006) concluded that the estimate of x by Dl' was often 
good but broke down for step function minima in D less 
than DL/10. This makes sense in light of Eq. (11), since 
the integral will be dominated by the minimum value 
of Dtana, and that minimum will only be driven by a 
minimum in D itself where (for moderate a), D<D/. tan at. 
Since typically tan aL ^ 1/10, a minimum in D would have 
to be less than O.lDt to be dominant. A similar conclusion 
can be drawn from the analytical results of Section 4: 
there, T becomes substantially larger than Df1 when 
7rsinaL<l, which implies Dmin<(4/7t2)Di«0.4Dt. As 
noted by Shprits et al. (2007), actual diffusion coefficients 
can exhibit deep minima, such as when EM1C waves are 
present in combination with whistler mode chorus waves. 

It is also true that the resulting lowest order lifetimes 
may be longer than the duration of the waves, so that the 
particle population may not have time to settle into 
the lowest eigenmode. In these situations, and especially 
considering energy diffusion and radial transport, no 
single timescale may be sufficient to describe the 
dynamics in a meaningful way. Fortunately, the develop- 
ment of 2D and 3D codes to advance the time-dependent 
diffusion equation is well under way. 
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